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ABSTRACT nels was computed.  Wiberg [3] in his dissertation  has 

W e  model  the  density of extrinsic  information in 
iterative  turbo  decoders by Gaussian  density  func- 
tions.  This  model  is  verified by experimental  measure- 
ments.  We  consider  evolution of these  density  func- 
tions  through  the  iterative  turbo decoder as  a  nonlinear 
dynamical  system  with  feedback.  Iterative decoding of 
turbo codes and of serially  concatenated  codes are an- 
alyzed based on  this  method.  Many  mysteries of turbo 
codes  can be explained based on  this  analysis. For ex- 
ample  we  can  explain  why  certain  codes  converge  better 
with  iterative decoding than  more  powerful codes which 
are only  suitable for max imum likelihood  decoding. The 
roles of systematic  bits  and of recursive  convolutional 
codes  as  constituents of turbo  codes are explained based 
on  this  analysis. 

I. INTRODUCTION 

Concatenated  coding schemes consist of the combi- 
nation of two or more  simple constituent  encoders and 
interleavers. The parallel  concatenation known as a 
“turbo code” [l] has been shown to yield remarkable 
coding gains close to  the theoretical  limits, yet admit- 
ting  a relatively simple  iterative  decoding  technique. 
Also, serial  concatenation of interleaved codes [2] may 
offer superior  performance to parallel  concatenation at 
very low bit  error rates.  In  both coding schemes, the 
core of the  iterative decoding structure is a soft-input 
soft-output  (SISO)  a-posteriori  probability (APP) mod- 
ule [8]. 

The analysis of iterative  decoders for concatenated 
codes with  short blocks is an unsolved problem. How- 
ever for very large block sizes this analysis is possible 
under  certain  assumptions. The asymptotic (as block 
size goes to infinity)  iterative  decoding  analysis  can be 
based on the  method of density  evolution proposed by 
Richardson and  Urbanke [4], see also [6], [9]. Using this 
method,  the capacity  threshold for  low density  parity 
check (LDPC) codes over binary  input AWGN chan- 

shown that  the extrinsic  information in iterative decod- 
ing  can  be  approximated by a Gaussian  density func- 
tion.  El Gama1 [5] in his dissertation considered the 
soft-input  soft-output APP module  in turbo decoders 
as a signal-to-noise ratio  (SNR)  transformer,  and also 
suggested a method for analyzing the overall turbo de- 
coder.  A  method for analyzing the convergence of the 
decoder similar to  the one developed here, but based 
on mutual  information, was discussed in [13]. 

In  this  paper, we analyze turbo codes and serially 
concatenated codes by approximating  the density func- 
tions for the extrinsics as Gaussian  densities, and  then 
computing  the mean and variance in the Gaussian den- 
sity  evolution. This  approximation was used to  obtain 
a threshold  on  minimum bit signal-to-noise ratio &/No 
for LDPC codes [6],  based  on using only the means of 
Gaussian  densities. First we determine  the  input  and 
output Gaussian  means and variances of the individ- 
ual SISO modules by simulation.  Then, in Sections I11 
and  IV, we use these  results to explain  conditions of 
turbo decoder convergence and  to resolve other mys- 
teries  associated with  turbo codes. At each  iteration, 
we compute  input  and  output SNR’s for the two com- 
ponent  decoders. We also define, as in low  noise am- 
plifiers, a “noise figure” for turbo decoders. We argue 
that if the noise figure of the  iterative  turbo decoder is 
below 0 dB  then  the  iterative decoder converges to  the 
correct codeword. Another  method, for concatenated 
codes with two component  codes  such  as  parallel  and 
serial turbo codes, is to  plot the  output SNR versus the 
input SNR for one  component  decoder, and  the  input 
SNR versus the  output SNR for the  other component 
decoder. If the two curves do not cross, then  the  iter- 
ative decoder converges. We used all the assumptions 
made by Richardson and  Urbanke for very large block 
sizes (essentially when the block size and  the number 
of iterations go to infinity but  the number of iterations 
is much less than roughly the log of the block  size cor- 
responding to  the  girth of the  graph representing the 
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using independent  measurements of mean and variance 
will result  in a slightly pessimistic threshold since the 
Gaussian  density  has the highest entropy for a given 
variance. Slightly optimistic  threshold  results  are ob- 
tained if  we impose  density  consistency as proposed by 
Richardson et a1 [6]. Consistency  under the Gauss- 
sian  assumption implies that  the variance of the ex- 
trinsic  density  function is twice its  mean,  and therefore 
SNR=mean/2, given that all +Is  are  transmitted.  This 
makes the analysis  easier since we only need to  deter- 
mine the mean of the  extrinsic information. The mean 
may be  determined by simulation for any convolutional 
code,  or  analytically  for  certain simple codes such as 
2-state recursive convolutional codes. 

A concentration  theorem [12], [9] can  be used to make 
these  results more rigorous. The concentration  theorem 
says that  the average bit  error  probability  concentrated 
around  the ensemble average of the bit  error  probabil- 
ity over all possible graphs  representing a given code, 
or over all interleavers  in the case of turbo codes, when 
the block size goes to infinity. Such convergence is ex- 
ponential in the block size, and,  as  the block size goes to 
infinity, the  graphs representing the code can  be con- 
sidered loop-free (locally tree-like). Such an assump- 
tion for turbo codes was argued in [9], based  on the 
decay of dependencies of messages that  are far apart 
from each  other  on  the trellis (similar to  the concept of 
finite-length  traceback  in  Viterbi  decoding). 

11. THE GAUSSIAN  DENSITY EVOLUTION MODEL 
Consider a parallel turbo code as shown in  Fig. 1. 

The  turbo decoder is based on two SISO modules  as 
shown in Fig. 2 and described  in  detail  in [8]. 
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to  channel 
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to  channel 

Fig. 1. The structure of a turbo code. 

The  iterative decoder  can  be viewed as a nonlinear 
dynamical feedback system.  Extrinsic  information mes- 
sages are passed from one  decoder to  the  other. We 
computed the  histogram of the extrinsic  information at 
the  output of a SISO module. As shown in Fig. 3, a 
Gaussian  assumption is a good approximation for the 

Fig. 2. Iterative turbo decoder  for turbo codes. 
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Fig. 3. The density  function of extrinsic  and its Gaussian 
approximation 

probability  density  function of the extrinsic informa- 
tion. 

With large  interleavers, the extrinsic  information 
messages are  independent  and  identically  distributed, 
given, say that  the all-zero codeword is transmitted 
(corresponding to, say, transmission of +l's on the 
channel).  Each message is modeled by a Gaussian  ran- 
dom  variable  with  mean pi and variance a? at the  ith 
iteration,  and  the signal-to-noise ratio  (SNR) of this 
random  variable  is defined as SNR = p!/a?. If the 
consistency  assumption  is  used, then a! = 2pi. 

Consider the  input  and  output SNR's for each de- 
coder at each iteration  as shown in  Fig. 4. These 
are  denoted SNRli,, SNRlout, SNR2in, SNR2,,t, 
and  they represent the SNR's  associated  with the ex- 
trinsic  information messages, not the SNR associated 
with the channel  observations. A nonzero Eb/No from 
the channel  enables  decoder 1 to produce a nonzero 
SNRlout for the  output  extrinsic information  despite 
starting  with  SNRli, = 0. For a given value of 
&/No, the  output SNR of each decoder is a nonlin- 
ear  function of its  input  SNR,  denoted by GI for de- 
coder l and Ga for decoder  2 as shown in  Fig. 4. We 
have SNRlout = G1(SNRlin, Eb/No) and SNR2,,t = 

n 
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G2(SNR2in, Eb/No). Also, SNR2in = SNRl,,,, and 
thus SNR2,,t = G2(G1(SNR1in, Eb/No),  Eb/No). 

111. A MODEL FOR DECODER  CONVERGENCE 

A “noise figure” F = SNRlin/SNR2,,t can  be de- 
fined  for the  turbo decoder at each iteration,  as  the 
ratio of the  input SNR of decoder 1 at  the beginning 
of the  iteration, to  the  output SNR of decoder 2 at the 
end of the  iteration (which becomes the  input SNR to 
decoder 1 at the  start of the  next  iteration). If the noise 
figure is bounded lower than 1 for the  entire range of 
input SNR to decoder 1, then  the SNR’s of the  extrin- 
sic information messages will increase  without  bound 
(if the block  size is infinite) and  the  turbo decoder will 
converge to  the correct codeword. These claims can be 
justified by the  results in  [4],  [6], [12], [9] on  iterative 
decoding decoding thresholds for LDPC codes. 

Equivalently we can  test  the decoder convergence by 
plotting the  output SNR of decoder 1 versus its  input 
SNR,  and  the  input SNR of decoder 2 versus its  out- 
put  SNR, as shown in  Fig. 5. In  this figure we consid- 
ered a rate  1/3 CCSDS turbo code [lo] consisting of 
two 16-state  systematic recursive convolutional codes. 
Encoder 1 is rate  1/2,  and encoder  2 is rate 1, as  its 
systematic  bits  are  punctured to make the overall code 
rate  1/3.  The  upper curve  corresponds to  the input- 
output function GI for decoder 1, and  the lower curve 
corresponds to GT1  for decoder 2. 

from channel Decoder 1 

Fig. 4. Analysis  of turbo decoding  as  a  nonlinear  dynamical 
system  with  feedback  using  Gaussian  density  evolution. 

Figure 5 also graphically shows the progress of the de- 
coder’s iterations. The improvement  in the SNR of the 
extrinsic  information, and  the corresponding improve- 
ment in the decoder’s bit error rate, follows a staircase 
path reflecting at right angles between the curves cor- 
responding to  GI  and G2. The  steps in this  staircase 
are large when the  bounding curves are  far apart,  and 
small when they  are close together.  Where  the curves 
are closest together,  the improvement in bit error rate 
slows down, as  many iterations  are required to bore 

through  the narrow iterative  decoding  tunnel between 
the curves. If the  iterative decoder successfully passes 
through  the  tunnel, convergence becomes very rapid  as 
the two curves  get farther  and  farther  apart  at higher 
SNRs. This means that as the block size goes to in- 
finity the bit  error rate goes to zero as the number of 
iterations increases. 

The  initial displacement of the G1 curve for 
SNRli, = 0 is dependent  on the &/NO due to  the chan- 
nel observations. If  we reduce &,/No from the value of 
0.8 dB used in  Fig. 5, then at some  point the two curves 
will just touch  each other.  That value of &/NO repre- 
sents  the  iterative decoding  threshold.  The  iterative de- 
coding tunnel will be closed at the SNR where the two 
curves touch,  and the staircase path will not go past  this 
point. The bit  error rate will settle to a nonzero value 
determined by this finite  SNR. Conversely, if Eb/No is 
greater  than  this  threshold  the decoder converges and 
the bit  error  rate goes to zero as the  iterations increase. 
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Fig. 5. Iterations and convergence  of  a turbo decoder. 

IV.  SOME TURBO CODE MYSTERIES EXPLAINED 
The “noise figure” analysis is more  accurate,  but the 

graphical  method using separate  SNRout versus SNRin 
for the  constituent codes  can  help to explain  many mys- 
teries of turbo codes and provide  more insight into the 
design of good concatenated codes. For example, there 
has not  been an  adequate  explanation of why the sys- 
tematic  bits in turbo codes should be  transmitted in 
order for the decoder to converge. A maximum likeli- 
hood  decoder  does  not  require  these  bits; indeed it is 
possible to construct  more powerful turbo codes with- 
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out transmission of the  systematic  bits. An explanation 
for the role of the  systematic  bits can be  surmised from 
Fig. 6. Although the received bits corresponding to 
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Fig. 6. The role of systematic  bits in turbo codes 

parity  bits have nonzero  SNR, if  we don't send the sys- 
tematic  bits  the SNR of the  extrinsic information at  the 
first iteration will be almost zero. This causes the curve 
for Code 2 in Fig.  6 to intersect,  near  SNR = 0, the two 
curves for Code 1 in the  same figure that correspond 
to nonsystematic  constituent codes, octal  (5/7)  and oc- 
tal  (5/7,5/7).  In  these cases, there will be  no conver- 
gence to  the correct codeword. However, if the system- 
atic  bits  are  transmitted, e.g., using the  octal  (1,5/7) 
code, the curve for Code 1 moves upward and  the SNR 
of the extrinsics at  the first iteration will be high. Now 
the secondary  question is why this is happening. Con- 
sider a rate-1 recursive convolutional code  (obtained by 
puncturing  the  systematic  bits of a rate-1/2  systematic 
recursive convolutional code). If the highest degree of 
the feed-forward polynomial is greater  than or equal 
to 1, then  the  input bit  equals the modulo-2 sum of 
nearly half of the  output  parity  bits in the  entire block. 
In  this case, it  can  be shown analytically that  the SNR 
of the  input  bits goes to zero as  the block size goes to in- 
finity. However if the highest degree of the feed-forward 
polynomial is zero, then  the  input equals the modulo- 
2  sum of only a few output  parity  bits, depending  on 
the highest degree of the feedback polynomial. This re- 
sults in a nonzero SNR for the  input  bits  at  the first 
iteration. An example of such a rate-1 recursive convo- 
lutional code is an accumulator (differential encoder), 
for which the feed-forward polynomial is 1 (highest de- 

gree is zero).  Another  example is the  rate-l 
convolutional code. For example, consider a parallel 
turbo code constructed  from a differential encoder and 
a  rate-1 recursive 16-state convolutional code, as shown 
in  Fig.  7. For this code, there is a substantial nonzero 
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Fig. 7. Example of not  sending the systematic  bits 

SNRlout for decoder 1 at  the end of the first itera- 
tion.  In  such cases, the decoder will converge as long as 
&/No is high enough to keep open a narrow iterative 
decoding tunnel between the two curves. 

There is a more  detailed way to argue that a non- 
trivial feed-forward polynomial causes the  extrinsic in- 
formation at  the first iteration  to  be zero. Suppose 
that  the code's input  bits {x,} and  output  bits (9,) 
are  related by xi xk-ipi = xi yk- iq i ,  corresponding to 
a rate-1 recursive code  with feed-forward polynomial 
coefficients { p i }  and feed-back polynomial coefficients 
{ q i } .  Assume without loss of generality that p j  = 1 for 
some j .  Then, using the  algebra  introduced by Hage- 
nauer [14], we have the following equation  relating  the 
extrinsic  information {X,} associated  with the  input 
bits {x,} and  the channel  information {Xi}  associated 
with the coded bits {yk}: 

tanh ( X k + / 2 )  = n [ t a n h  (A,-i/2)Ipi n [ t a n h  (X",i/2)]4i. 
i # j  i 

Unless pi  = 0 for all i # j ,  the right-hand  side is zero 
at the first iteration because all of the  initial extrinsics 
{Xk-i} are zero. Thus, given an  input SNR of zero, 
the  output SNR will also be zero. For a code with only 
one nonzero feed-forward component,  the  iterations will 
start  with a nonzero SNR, because  in that case there 
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are no tanh(.) factors  on the right  side of this equation 
coming from zero-SNR extrinsics.  By  taking deriva- 
tives of the  equation above, we can  establish the slope 
of the SNR characteristic for the first iteration,  and 
use this slope as one of the tools for code design. One 
may  ask if this same conclusion is true when we use the 
forward-backward sum-product  algorithm  on  the  trellis 
representation of a rate-1 recursive convolutional code. 
This is  easy to show analytically for a  rate-1 recursive 
convolutional code with full-degree feedback and feed- 
forward polynomials. If  we start  with uniform state 
distributions at  the beginning and end of a block  for 
the calculation of Q and p in the forward and back- 
ward algorithm [7], [8], the distribution of Q and p re- 
mains uniform. Due to  the  symmetry of edges for input 
bits 0 and 1, the  output  extrinsic information will be 
zero. If the feedback polynomial is not full-degree or if 
the feedforward polynomial  with at least two nonzero 
components is not full-degree, then, by averaging the 
transition  matrix  representing the trellis  section,  with 
transition  probabilities  depending  on the  parity  bits on 
the edges leaving or entering the  states, we will have a 
nonuniform state  distribution  but  with groups of two 
or more states having the  same value that again  results 
in  extrinsics that approach zero on average. 

We note  that  the above arguments  do  not hold for a 
recursive convolutional code with  rate less than one.  In 
this case the SNR of the extrinsics at the first iteration 
is nonzero. However, if  we compare, say, rate-1/2 sys- 
tematic  and  nonsystematic recursive codes (the  latter 
obtained by puncturing  the  systematic  bits of a rate- 
1/3 convolutional encoder),  the SNR of the extrinsics at 
the first iteration  for the systematic code is significantly 
higher than for the  nonsystematic code. However, the 
nonsystematic code’s SNR  characteristic  has a higher 
slope as the  input SNR is increased. The basic mecha- 
nism for all of these conclusions is that, when the feed- 
forward polynomial has only one nonzero  component, 
then  the sequence of channel  observations gives direct 
information about  the sequence of states,  and nonzero 
extrinsic  information  can  be inferred about each input 
bit by applying the feedback polynomial coefficients to 
the  state sequence. On  the other  hand, when the feed- 
forward polynomial has more than one nonzero compo- 
nent,  nothing  can  be  inferred  about  the  state sequence 
from the channel  observations unless there  are more 
channel bits  than  input  bits, i.e., the code rate is less 
than 1. 

Next we explain the role of recursive  convolutional 
codes by considering what  happens when the compo- 

nent codes are nonrecursive. As shown in Fig. 8, in this 
case the two curves will always cross each other.  The 
curves for codes 1 and 2  in this figure have the opposite 
convexity from  those  seen  in the previous figures for  re- 
cursive convolutional  constituent codes. Iterations  start 
with a substantially  nonzero  SNRlout  due  to  the chan- 
nel information,  but  SNR improvements at successive 
iterations  are  eventually  trapped at the point where the 
two curves cross. Further  iterations will not improve 
the  bit error rate beyond an  error floor determined by 
this  SNR. 
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Fig. 8. Convergence of non-recursive encoders 

For high enough SNR,  the curves for recursive convo- 
lutional codes approach a straight-line  asymptote  with 
slope 1, whereas those for nonrecursive codes flatten  out 
to zero slope.  One  may  wonder, for the case of recursive 
codes, what is the mechanism by which highly reliable 
extrinsic  information keeps generating  additional ex- 
trinsic  information,  despite  the  fact that  the weak chan- 
nel symbols seem almost  irrelevant  compared to  the 
strong a  priori information  associated  with  the high- 
SNR extrinsics? The explanation is the same as the 
explanation for why recursive constituent codes make 
stronger  turbo codes than nonrecursive  constituents, 
namely that errors  with  information weight 1 corre- 
spond to codewords with infinite coded weight. Thus, 
even weak channel  symbols,  amassed over an  infinite 
block, are sufficient to rule  out  the possibility of a sin- 
gle isolated  information  bit  error. High-SNR extrinsic 
information for a given bit i corresponds to a tiny a 
priori probability of bit error ~ i .  But since the channel 
information rules out single errors,  bit i cannot  be  in 

5 



error unless at least one other  bit j is also wrong, with 
tiny  probability ~ j .  Thus,  the  input extrinsic informa- 
tion at  bit i is log[(l - E ~ ) / E ; ] ,  and  bit i gets new extrin- 
sic information that amounts to  log[(l - & j ) / & j ] .  If the 
high-SNR extrinsics are uniform over the code block, 
this implies that  the SNR increases at a 1:l slope for 
high SNR '. 

Figure 9 elucidates the role of a primitive  feedback 
polynomial. In  this figure we show the SNRout ver- 
sus SNRin curves for two different rate-1/3  four-state 
turbo codes. One  code  is the  same code considered in 
Fig. 6, for  which the feedback polynomial is primitive 
(octal  7).  The  other code uses a nonprimitive feedback 
polynomial (octal  5). We see that for high SNR's the 
two curves for the code using primitive feedback diverge 
from  each  other much more  rapidly  than  the curves for 
the code with  nonprimitive feedback. This produces 
faster convergence when the  iterations reach this region. 
On  the  other  hand, in the low SNR region the  iterative 
decoding tunnel is slightly narrower for the code with 
primitive feedback than for the one with  nonprimitive 
feedback. This  can cause the iterative decoding thresh- 
old for the code with  nonprimitive feedback to be lower 
than  that for the code with  primitive feedback, even 
though the opposite conclusion would be true if the de- 
coders were maximum likelihood. 

In Fig. 9, a difference  in slopes corresponds to  the 
rate of convergence of the iterative  decoder. A large 
slope difference implies faster convergence. Primitive 
feedbacks, e.g.,  octal (5/7)  instead of octal  (7/5)  may 
result in faster convergence above the decoding thresh- 
old. 

Figure 10 shows the role of different  state  complex- 
ities. The  SNRout versus SNRin curves are  plotted 
for rate-1/3  turbo codes with  4-state  and  16-state con- 
stituents. We see that  the 16-state code (with poly- 
nomials given  by octal 33/31) has a clear advantage  in 
speed of convergence in the SNR region beyond the iter- 
ative decoding tunnel.  On the  other  hand,  the  sharper 
curvature of the SNR curves for the individual  16-state 
codes can narrow the iterative decoding tunnel  and re- 
quire a higher decoding threshold. 

Figure 11 shows how a similar  analysis  method  can be 
applied when turbo codes are viewed as a serial concate- 
nation of an  outer  repetition  code  with an inner recur- 
sive convolutional code. The two concatenated codes 
in this figure are  rate-1/3  turbo codes with  4-state  and 

'For finite block size, the  output  SNR for large input  SNR even- 
tually  saturates  and  its slope goes to zero. The  saturation level 
depends  on  type of code, block size, and channel E,/No. 

6 

5 

4 - a 
4 3  
u) 

2 

1 

0 Y 0 1 SNRin 2 3 4 

Fin. 9. Rate 113 PCCC  with  two  4-state  Codes  (primitive 
I 

vs nonprimitive  feedback) 

. _  

Rate 113 
E@,=0.8 dB 

8 -  / (1,33/31) Code 1 

I a a z 
v) 

i 

Fig. 10. Comparison of rate 1/3 PCCCs  with  different state 
complexities 

8-state  constituents.  In each case, the  outer code pro- 
duces a set of systematic  (uncoded)  bits  and two repe- 
titions of these  bits, which are  then encoded by a rate-l 
recursive convolutional  inner code. The  SNRout versus 
SNRin  characteristic of the  outer repetition-2 code is 
a  simple straight line with slope 1, starting  at a  point 
determined by the channel  SNR of the systematic  bits. 
The SNR  characteristic of the  4-state  rate-1 inner code 
(octal  5/7) is the  same as that shown in  Fig. 6,  and 
it suffers from the same  problem of starting  with  an 
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Fig. 11. Turbo codes  viewed as serial  concatenation of outer 
repetition code with  inner  code 

output SNR near 0. However, in this case, the nonzero 
x-axis intercept of the  outer code’s SNR  characteris- 
tic  (due to  the effect of information  from the channel 
on the  systematic  bits) is sufficient to allow an  itera- 
tive  “staircase” to be followed in the direction of the 
iterative decoding tunnel. Decoder convergence for the 
8-state code (octal  11/13) is similar,  though  small  per- 
formance differences can  be  deduced  due to  the different 
curvatures, as in Fig.  10. 

Figure 12 illustrates the analysis  method  applied to a 
serially concatenated code. In  this example, the  outer 
and inner codes are identical 4-state  rate-1/2 recur- 
sive convolutional codes  (octal 1, 5/7) ,  except that one- 
fourth of the  output symbols of the inner code are punc- 
tured  to make the overall code rate 1/3.  Comparing 
this figure to  the previous figure, we see that  the much 
stronger (1, 5/7)  outer code has  an SNR characteristic 
with much sharper  curvature  than  the slope-1 straight 
line for the simple  repetition  code  in  Fig. 11. This pro- 
duces very fast convergence beyond the iterative decod- 
ing  tunnel,  but at  the same  time  the  rapid initial rise 
of the  outer code’s SNR  curve  determines the minimum 
&,/No (in  this case, about 0.6 dB) required to keep the 
inner code’s SNR curve from intersecting it. Despite 
its  initial  sharp  curvature,  the  outer code’s SNR  curve 
eventually  approaches a straight-line  asymptote.  The 
asymptotic  slope of the SNRin versus SNRout curve for 
this code, as plotted  in  the figure, is 1/4.  In general, 
this  asymptotic  slope will be no  larger than  l/(dmin-l), 
where dmin is the minimum  distance of the  outer code. 
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Fig. 12. Example of a rate 1/3 serial turbo code 

The  argument for this is  similar to  that used earlier to 
establish the  1:l  asymptotic slope of the SNR curve for 
a recursive convolutional  inner  code. For a given outer 
code symbol to be  incorrect, at least dmin - 1 additional 
code symbols  must also be incorrect to satisfy the code 
constraint.  If, from the extrinsic  information, all code 
symbols are  independently  incorrect  with  small prob- 
ability E ,  then  after  applying the code constraint, the 
probability that a given symbol is incorrect is reduced 
to &in or lower. The  reduction in this probability from 
E to ~ ~ m i n  corresponds to  output  extrinsic information 
equal to &in - 1 times the  input  extrinsic information. 
For some outer codes, the asymptotic slope will be dif- 
ferent for the  input-output  SNR  characteristics corre- 
sponding to different code  symbols.  In  general,  it  can 
be  argued that  the reciprocal  asymptotic  slope of the 
SNRin  versus  SNRout  curve will equal the “minimum 
extrinsic  distance” of the corresponding code symbol. 
For a linear (n, IC) code, the minimum  extrinsic  distance 
can  be defined as one less than  the smallest weight of 
any codeword containing a 1 in the location of the given 
code symbol. 

Finally, we show in Fig.  13 an example of how the 
convergence properties of the overall decoder can  be 
determined from its noise figure. The code  in this case is 
a simple serially concatenated  “repeat-and-accumulate 
(RA)”  code Ill], tested  at two values of &,/NO just 
above the  iterative decoding  threshold. The noise figure 
in this case rises (with each iteration i )  from an  initial 
value of 0 to a maximum  just below 1, indicating that 
decoder convergence is achieved. 
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Fig. 13. Noise figure for a rate 1/3 repeat-and-accumulate 
(RA) code. 

V. Low DENSITY PARITY CHECK  CODES 

The graphical  analysis  method also gives insights  into 
the design of low-density parity-check (LDPC) codes. 
The  method is the  same as that of [4],  except now 
we interpret  the  set of “variable”  nodes and  the set 
of “check” nodes  in the  LDPC decoder’s belief propa- 
gation network as two constituents of a  turbo-like de- 
coder,  with separate  SNRout versus SNRin character- 
istics. Since each variable  node  simply combines (in- 
dependent)  information about a given bit from sev- 
eral incoming sources, the messages passed to and from 
the variable  nodes are like those passed to and from 
a decoder for a  repetition  code.  The  corresponding 
SNRin versus SNRout  characteristic is a straight line 
with  slope l/(d, - l), where d ,  is the degree of vari- 
able nodes, which is the number of connections to  the 
variable node. The SNR  characteristic for the collec- 
tion of check nodes is obtained by averaging a product 
of tanh functions, as shown in [4]. Alternatively, this 
SNR  characteristic  may  be  obtained by simulation. 

Figure  14 shows the SNR characteristics for the vari- 
able  nodes and  the check nodes of rate-l/2  LDPC codes 
with degrees (2,4),  (3,6),  (4,8),  and  (5,lO).  In  this 
figure, the SNR characteristics for the variable  nodes 
are  straight lines with slopes 1, 1/2,  1/3,  1/4, ema- 
nating from a nonzero SNR  determined by the channel 
Eb/No; in this case, Eb/No = 1.1  dB.  The SNRout ver- 
sus SNRin characteristics of the check nodes start from 
SNR = 0, and increase more slowly with SNR when 
the degree of the check nodes increases. In  this exam- 

SNRi (3.6) LDPC 
\ 

S N R ,  (2.4) LDPC 

SNR, c b d  

0 1 4 5 

Fig. 14. Iterative decoding  threshold analysis for rate-1/2 
LDPC codes. 

ple, the  (2,4),  (4,8),  and (5,lO) codes are  not reliably 
decodable at  this &/NO because their respective SNR 
characteristics  intersect. However, the (3,6) code is just 
at  the limit of preserving a narrow  iterative  decoding 
tunnel for reliable convergence. 

Now  we look at an example showing the improve- 
ment obtainable by allowing variable nodes with mixed 
degrees. First consider a rate-1/2  (4,8) regular LDPC 
code. The iterative  decoding  threshold of this code is 
1.6 dB [6]. Now consider another code  with two equal- 
size groups of variable  nodes of degrees 2 and 6. All 
of the check nodes are assumed to have degree 8. The 
resulting Eb/No threshold for this code is 1.0 dB.  This 
gives 0.6  dB improvement over the (4,8) regular LDPC, 
and  the code rate is still 1/2.  Figure 15 shows SNR 
curves for the check nodes and  the variable nodes. As 
shown in the figure, the SNRout versus SNRin charac- 
teristic of the check nodes  degrades due to  the mixture 
input. However, the slope of the SNRin versus SNRout 
characteristic of the  mixture of variable  nodes decreases 
more, such that  at Eb/No = 1.0 dB  the two curves touch 
each other. At the  same Eb/No, the two SNR curves 
for the  (4,8) regular LDPC code cross each other. 

Returning  to Fig.  14, we see that  the SNR curves 
for the check nodes of different degrees all approach 
parallel straight lines with 1:l slopes for high SNR. 
The  asymptote for a degree d ,  check node satisfies 
the  equation  SNRout = SNRin - 21n(d, - 1).  The 
straight-line  equation for a variable  node of degree d ,  
is SNRout = ( d ,  - l)SNRin + 2REb/No. In  the spe- 
cial case of variable  nodes with degree d ,  = 2, both 

8 



1 .o 

0.0 
2 3 

SNRin 
4 

Fig. 15. Iterative  decoding  threshold analysis for rate-1/2 
LDPC codes  with  mixture  variable  nodes. 

slopes are equal. In  this case the SNRout versus SNRin 
asymptote for the check nodes will lie entirely above the 
SNRin versus SNRout  curve for the variable  nodes only 
if ~ R E ~ / N O  > 21n(dc - I), or E ~ / N O  > & In(dc - I), 
since in this case the code rate R = 1 - 2/d,. This can 
serve as a lower bound on  the &/NO threshold.  This 
coincides with the result  obtained by Wiberg [3], and 
is a special case of the stability  condition  obtained by 
Richardson et a1 [4] for LDPC codes. 
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